Probability

<u>Probability</u>- How likely an event is to occur. Can be written as a fraction, decimal, or percent.

Always on or between 0 and 1

0 Impossible

1 certain

Example: What is P(green)? 14, .25, or 25%

Outcomes- all choices that may occur.

Fraction form of probability:

Chance of specific outcome

total # of outcomes

Somple spoce a list of all possible outcomes

he more trouble, the closer the exercimeno and theoret-local will be the							
Experimental whomen ochicle who have actually happened	Theoretical whom should happen						
favorable outcome number of trials conducted What does happen?	Theoretical Probability:						
Example: You toss a die 10 times. You record the number. You want to find the experimental probability of getting a 3. If a 3 occurred 6 times, the probability is $\frac{6}{10} = \frac{3}{5}$	Example: There are 6 numbers on a die. You want to find the theoretical probability of getting a 3. Probability of rolling a 3 = $\frac{1}{6}$ When you toss a die, you should get a 3 one sixth of the time.						

<u>Tree Diagrams</u>- a way to illustrate the possible outcomes of a given event

Ex. Given 3 flavors of icecream and 2 toppings, what are all of the possible combinations of one icecream and one topping?

Icecream: vanilla (v) chocolate (c) strawberry (s) Toppings: fudge (f) cherries (c)

How many total outcomes? 6

Sample Space- list of all the possible outcomes

S= { vf, vc, cf, cc, sf, sc}

Ex. 2 main dishes (beef or chicken) and 3 veggies (tomatoes, peas, or okra)

What is the sample space?
S={bt, bp, bo, ct, cp, co}
How many total outcomes are there? 6

Fundamental Counting Principle— the number of options in event A X the number of options in event B = the total number of outcomes (# Event A X # Event B = Total # Outcomes) Ex. Flip four coins:

go back to p. 4

SO...when 4 coins are flipped,

Coin 1-2 possible outcomes H,T

Coin 2- 2 possible outcomes H,T

Coin 3- 2 possible outcomes H,T

Coin 4-2 possible outcomes H,T

Therefore...2x2x2x2=16

Ex. Company IDs require 4 numbers. The digits 0, 1, 2, 3, 4 are used. How many possible IDs (outcomes) can be made?

Event A Event B Event C Event D $5 \times 5 \times 5 \times 5 = 625 \text{ IDs}$

Compound Probability Notes

Ex: Find the probability of: p (Heads and green)

- 2 ways to find the probability of a compound event:
 - Create the sample space & find the number of favorable outcomes (Make a tree diagram): H < = -18
- Find the probability of each individual event and multiply them together →

He do

Key

Sum of two dice (number cubes)

This table shows the results when you roll two dice and add the numbers:

ie #1	-	WENN				25.5A	100
		2	3	4	5	6	7
		3	4	5	6	7	8
		4	5	6	7	8	9
		5	6	7	8	9	10
		6	7	8	9	10	11
		7	8	9	10	11	12

The table shows that when you roll 3 and 2, the sum is 5; read across from 3 to the 2 column. When you roll 5 and 6 the sum is 11; read across from 5 to the 6 column.

* There are 36 outcomes when you roll 2 dice.

P(sum is 4) =
$$\frac{3}{36} = \frac{1}{12}$$

P(sum = 12) = $\frac{1}{36}$

P(sum is 3) = $\frac{2}{76} = \frac{1}{18}$

P(sum is 8) = $\frac{5}{36}$

P(sum is 11) = $\frac{2}{316} = \frac{1}{18}$

P(sum is 5) = $\frac{1}{316} = \frac{1}{4}$

P(sum is 2) = $\frac{1}{316}$

P(sum is 6) = $\frac{3}{316}$

P(sum is 7) = $\frac{46}{316} = \frac{1}{46}$

of being rolled when you roll 2 dice together.